Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum.

نویسندگان

  • K Kashefi
  • B M Moskowitz
  • D R Lovley
چکیده

In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an electron acceptor and hydrogen as an electron donor, the Fe(III) oxide was reduced to an extracellular, ultrafine-grained magnetite with characteristics similar to that found in some hot environments and that was previously thought to be of abiotic origin. Furthermore, cell suspensions of P. islandicum rapidly reduced the soluble and oxidized form of uranium, U(VI), to extracellular precipitates of the highly insoluble U(IV) mineral, uraninite (UO(2)). The reduction of U(VI) was dependent on the presence of hydrogen as the electron donor. These findings suggest that microbes may play a key role in metal deposition in hyperthermophilic environments and provide a plausible explanation for such phenomena as magnetite accumulation and formation of uranium deposits at ca. 100 degrees C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4.

A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using l...

متن کامل

SIMULTANEOUS REDUCTION OF U(VI) AND Fe(III):

8 Dissimilatory metal reducing bacteria (DMRB) are capable of reducing contaminants such as 9 Cr(VI), Se(VI) and U(VI) during respiration, a process that has a pronounced impact on the 10 mobility of these contaminants in surface and subsurface environments. DMRB can also 11 reduce Fe(III), most commonly associated with solid phase (hydr)oxide minerals such as 12 ferrihydrite, goethite, or hema...

متن کامل

Products of abiotic U(VI) reduction by biogenic magnetite and vivianite

Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate a...

متن کامل

Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium

Dissimilatory metal-reducing bacteria (DMRB) can utilize Fe(III) associated with aqueous complexes or solid phases, such as oxide and oxyhydroxide minerals, as a terminal electron acceptor coupled to the oxidation of H2 or organic substrates. These bacteria are also capable of reducing other metal ions including Mn(IV), Cr(VI), and U(VI), a process that has a pronounced effect on their solubili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Geobiology

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2008